Complex number 2

- **1.** Given $z_1 = 2 + i$, $z_2 = 3 4i$ and $\frac{1}{z_3} = \frac{1}{z_1} + 2z_2$, find z_3 . Write your answer in the standard form of a + bi. Hence, find the modulus and principal argument of z_3 . State your answers correct to three decimal places.
- Given that |z 1| = 2|z + 1|, find the Cartesian equation of the locus of the point P representing complex number z.
 Hence, sketch the locus of the point P on an Argand diagram.
- **3.** Solve the equation $z^5 + 32i = 0$.
- **4.** If the equation $z^3 + az + b = 0$ has a root z = -1 + i where a, b are real numbers, find the values of a, b. Show that z = -1 i is also a root of the equation.
- **5.** (a) One of the roots of the equation $4x^3 + x + 5 = 0$ is an integer. Find this root and write down a quadratic equation for the remaining roots. Find these roots, expressing your answer in the satandard form of a + bi.
 - (b) By writing $y = \frac{1}{x}$, find the roots of the equation $5y^3 + y^2 + 4 = 0$, giving the complex roots in the form a + bi.
- **6.** Find the roots of the equation $(z i\alpha)^3 = i^3$, where α is a real constant.
 - (a) Show that the points representing the roots of the above equation form an equilateral triangle.
 - (b) Solve the equation $[z (1 + i)]^3 = (2i)^3$.
 - (c) If ω is a root of the equation $ax^2 + bx + c = 0$, where $a, b, c \in \mathbb{R}$ and $a \neq 0$, show that the conjugate ω' is also a root of this equation.
 - (d) Hence, or otherwise, obtain a polynomial equation of degree six with three of its roots also the roots of the equation $(z 1)^3 = i^3$